Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-33171.v1

ABSTRACT

Hypercytokinemia is a critically fatal factor in COVID-19. However, underlying pathogenic mechanisms are unknown. Here we show that fibrinogen and leukotriene-A4 hydrolase (LTA4H), two of the most potent inflammatory contributors, are elevated by 67.7 and astonishing 227.7% in the plasma of patients infected by SARS-CoV-2 and admitted to intensive care unit in comparison with healthy control, respectively. Conversely, transferrin identified as a fibrinogen immobilizer in our recent work and Spink6 are down-regulated by 40.3 and 25.9%, respectively. Furthermore, we identify Spink6 as the first endogenous inhibitor of LTA4H, a pro-inflammatory enzyme catalyzing final and rating limited step in biosynthesis of leukotriene-B4 that is an extremely inflammatory mediator and a target to design superior anti-inflammatory drugs. Additionally, virus Spike protein is found to evoke LTA4H and fibrinogen expression in vivo. Collectively, these findings identify the imbalance between inflammatory drivers and antagonists, which likely contributes to hypercytokinemia in COVID-19. Spink6 may have superior anti-inflammatory function because it specifically targets epoxide hydrolase of LTA4H to inhibit leukotriene-B4 biosynthesis without effecting LTA4H’s aminopeptidase activity. 


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL